Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 248, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580955

RESUMO

BACKGROUND: Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS: Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION: These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Egito , Melhoramento Vegetal , Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807972

RESUMO

Antimicrobial peptides (AMPs) are small molecules consisting of less than fifty residues of amino acids. Plant AMPs establish the first barrier of defense in the innate immune system in response to invading pathogens. The purpose of this study was to isolate new AMPs from the Zea mays L. inbred line B73 and investigate their antimicrobial activities and mechanisms against certain essential plant pathogenic bacteria. In silico, the Collection of Anti-Microbial Peptides (CAMPR3), a computational AMP prediction server, was used to screen a cDNA library for AMPs. A ZM-804 peptide, isolated from the Z. mays L. inbred line B73 cDNA library, was predicted as a new cationic AMP with high prediction values. ZM-804 was tested against eleven pathogens of Gram-negative and Gram-positive bacteria and exhibited high antimicrobial activities as determined by the minimal inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). A confocal laser scanning microscope observation showed that the ZM-804 AMP targets bacterial cell membranes. SEM and TEM images revealed the disruption and damage of the cell membrane morphology of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato (Pst) DC3000 caused by ZM-804. In planta, ZM-804 demonstrated antimicrobial activity and prevented the infection of tomato plants by Pst DC3000. Moreover, four virulent phytopathogenic bacteria were prevented from inducing hypersensitive response (HR) in tobacco leaves in response to low ZM-804 concentrations. ZM-804 exhibits low hemolytic activity against mouse red blood cells (RBCs) and is relatively safe for mammalian cells. In conclusion, the ZM-804 peptide has a strong antibacterial activity and provides an alternative tool for plant disease control. Additionally, the ZM-804 peptide is considered a promising candidate for human and animal drug development.


Assuntos
Antibacterianos , Proteínas Citotóxicas Formadoras de Poros , Pseudomonas syringae/crescimento & desenvolvimento , Zea mays/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Clavibacter/crescimento & desenvolvimento , Camundongos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Zea mays/genética
3.
Front Microbiol ; 12: 667085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746937

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2020.01353.].

4.
Front Microbiol ; 11: 1353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636825

RESUMO

Antimicrobial peptides (AMPs) are effective against different plant pathogens and newly considered as part of plant defense systems. From prokaryotes to eukaryotes, AMPs can exist in all forms of life. SM-985 is a cationic AMP (CAMP) isolated from the cDNA library of Mexican teosinte (Zea mays ssp. mexicana). A computational prediction server running with different algorithms was used to screen the teosinte cDNA library for AMPs, and the SM-985 peptide was predicted as an AMP with high probability prediction values. SM-985 is an arginine-rich peptide and composed of 21 amino acids (MW: 2671.06 Da). The physicochemical properties of SM-985 are very promising as an AMP, including the net charge (+8), hydrophobicity ratio of 23%, Boman index of 5.19 kcal/mol, and isoelectric point of 12.95. The SM-985 peptide has amphipathic α-helix conformations. The antimicrobial activity of SM-985 was confirmed against six bacterial plant pathogens, and the MIC of SM-985 against Gram-positive indicators was 8 µM, while the MIC of SM-985 against Gram-negative indicators was 4 µM. The SM-985 interacting with the bacterial membrane and this interaction were examined by treatment of the bacterial indicators with FITC-SM-985 peptide, which showed a high binding affinity of SM-985 to the bacterial membrane (whether Gram-positive or Gram-negative). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the treated bacteria with SM-985 demonstrated cell membrane damage and cell lysis. In vivo antimicrobial activity was examined, and SM-985 prevented leaf spot disease infection caused by Pst DC3000 on Solanum lycopersicum. Moreover, SM-985 showed sensitivity to calcium chloride salt, which is a common feature of CAMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...